Development of 128M DRAM by Stacked Packaging Technology

Packaging Technology Team

Background of the Development

- ◆ Recently, the users system environments are rapidly changed to higher performance.
- So, they required high memory density.
- ♦ But memory makers could not satisfy their requirements.
- ◆ Many system makers request their memory supplier high density memory solution.
- ◆ 3D Package is one of the solutions as high density memory

◆ Stacked 128M DRAM is one of our example.

Text environments

1990's

Samsung Electronics

What is SAMSUNG's Stacked package.

Thickness: A little thicker than TSOPII

Width: Same as TSOPII & SOJ

Lead: J type

Total Package thickness(compatible to SOJ)

- In case of two-stack package,

Two-thirds thickness of SO.I

Better Solder Joint Reliability, compared to TSOPII

Reduced PCB Space by J type package

Why Stacked 128M DRAM (2 Stack)!

Easy Manufacturing.

- > Using the proven process(Conventional plastic package process)
- > Only two stack

Using the same SMT foot print.

> It is not needed to change the PCB design.

Reliable

> Better reliability & performance than conventional plastic package

♦ Most important thing is Cost Effective.

- > Dose not need new chip design and process .
- > Dose not change current process

Design concept of Stacked 128M DRAM

1. Stacked 16Mx8(16Mx4*2) DRAM Pin Configuration

- Top package uses the same lead frame that of 16Mx8 DRAM.
- Bottom package uses the same lead frame but the wire bonding is different(bonding option).
- Same pin configuration as 8Mx8 except center Vcc/Vss

vkg_eda-ckw-9710

Samsung Electronics

2. Stacked 16Mx8(8Mx8*2) DRAM Pin Configuration

- Top package uses the same lead frame that of 8Mx8 DRAM.
- Bottom package uses the same lead frame but the wire bonding is different(bonding option).
- Dual RAS Stacked 16Mx8
 same pin configuration
 as 8Mx8 except pin 6(RAS1)

Process Review.

<Our Stacked packaging process is based on the Conventional process>

Issues on developing Stacked Package

- **♦** Warpage and Coplanarity.
- ♦ Molding resin bleed and In-line plating for bottom package.
- ◆ Lead Plating Thickness and adding Solder Paste.
- Stacking Process

Process Flow

Conventional Plastic Packaging process + Stack Process

Warpage and Coplanarity

* Warpage; below 25um

* Coplanality; below 70um

Resin bleed and Chemical Deflash

Measurement of mold resin bleed

Sample	Value(mm)	Sample	Value(mm)	Sample	Value(mm)	Sample	Value(mm)
1	0.45	6	0.47	11	0.48	16	0.53
2	0.51	7	0.49	12	0.52	17	0.52
3	0.50	8	0.51	13	0.48	18	0.54
4	0.52	9	0.48	14	0.52	19	0.48
5	0.51	10	0.52	15	0.49	20	0.51

Heavy Flash (5mil max.)

After Tin Plating
With Chemical Deflash (X20)

Body Edge to Joint Center is 12 ~ 15*um*

Lead Tin Plating and Solder Paste

1. Lead Tin plating

1) Material; Sn /Pb(85:15)

2) Process Evaluation

- Purpose: Obtain upto 20*um* Tin Plating Thickness (Using interconnection material of the stacked package with flux.

-both top and bottom packages.) (um)

Split	Condition	Result	Remark
1st	- 90A	- Avg.;22.04	- Normal
(10 Strip)	- 3.0m/min	- Max.;24.26	Condition
		- Min.;19.01	
2nd	- 90A	- Avg.;23.89	*Current
(10 Strip)	- 2.5m/min	- Max.;26.93	= 65A
		- Min.;22.36	
3rd	- 90A	- Avg.;23.59	*Time =
(30 Strip)	- 2.0m/min	- Max.;26.79	4.2m/min
		- Min.;20.47	
Mass	- 90A	- Avg.;19.50	
(800	- 2.5m/min	- Max.;21.67	
Strip)		- Min.;17.63	

2. Adding Solder Paste

1) Material : Sn/Pb(63:37) Sn/Ag(96.5:3.5)*

*; Not Reported this paper.

- 2) Viscosity change: 80K, 100K, 300K (CPS)
- 3) Printing Area:
 - Only the seating plane of top package (Rounded edge)

Stacking Process Flow

Stacking Process(2/2); Diagram Explanation

- 1. Move Bottom Package from Tray to Stacking Jig, using Pick & Place equipment.
- 2. Put Top Package on the Metal Plane(containing Solder Paste) to apply Solder Paste into Top Package lead(Sitting Plane).
- 3. Move Top Package(containing Solder Paste) on Bottom Package which was put already in Stacking Jig in order for raw stacked component to make right & left(side) alignment.
- 4. Transfer from Stacking Jig to Stacking Loader in order for raw stacked component to make top & bottom alignment.
- 5. Pass Stacking Loader(containing raw stacked component) through round-type Hot Air Zone(soldering zone).
- After Stacked component on Stacked Loader passing through round-type
 Hot Air Zone, solder joint layer between top and bottom package, is formed
 and stacked component process is finished.
- 7. Stacked component is transferred from Hot Air zone to Tray.

Tin Plating Thickness, Warpage & Coplanarity Evaluation

1. Evaluation Item

No.	Warpage	Plating	Coplanarity	Quarity
1	N	2.5m/min.	2mil	16
2	N	2.5m/min.	3mil	16
3	N	2.0m/min.	3mil	16
4	D	2.5m/min.	2mil	16
5	D	2.5m/min.	3mil	16

^{*} N; Convex Shape warpage

D; Concave Shape warpage

2. Result

No	Number of R	Number of S	Number of F	Remark
1	23	17	472	R+S=40
2	34	8	470	R+S=42
3	6	-	506	R+S=6
4	14	19	479	R+S=33
5	31	30	451	R+S=61

F = Full Fillet / R = Recessed Fillet / S = Side Fillet

3. Problems

- Irregular solder joint Shape
- Package Contamination
- Package Lead discolor
- Weak Joint Strength
- *Due to Flux Fume & Small Amount of Tin

Contamination (Irreadable Marking)

Discolor & Contamination (Contact Fail at E/L Test)

Solder Paste

- We had been evaluate several conditions.
 - Normal solder paste; Sn/Pb (63:37) for normal screen printing
 - High temperature solder; Sn/Ag(96.5:3.5)
 - Increase viscosity step by step; 80K --> 150K --> 300K CPS

- Final result

- Solder Paste viscosity ;300,000cps
- Material; Sn/Pb (63/37)
- > Sn/Ag(96.5:3.5) is more difficult process control & less mass productivity

- Issues

- > Solder Balls(max. 7mil) are placed between top package and bottom package, and lead and lead .(During the alignment of two packages under the Staking Jig)
- > But they could be removed.

Solder Joint View 1

(Coplanairy issue)

(Plating only)

(Plating only)

(Solder Paste)

(Solder Paste)

Lead Pull Strength Test

Top Lead -- Pull

Spec.: 500g/pin (min.)

Bottom Lead

-- Fix on the stage

Result

- Tin Plating Only; 250 ~ 1115g/Pin

- Solder Paste ; 770 ~ 1950g/Pin

Summary of electrical function test

1st test; Unit & Stacked Package

Device		Room Temp Sort	Hot Sort (Burn-In)	Stack	Remarks
	Top	674/690	627/672		Fail nexts are \$1000 Fail
16Mx4 Bo	Bottom	673/695	612/673	602/612	- Fail parts are almost O/S Fail
	Yield	97.25%	92.11%	(98.26%)	(Misalign/Bent Lead/Jamming)
	Top	691/716	619/691	581/605	- Rework & Retest
8Mx8	Bottom	697/716	620/697	(96.33%)	
	Yield	96.93%	89.3%	(90.3370)	100 /0 G00 u

2nd test; Stacked Package (For verification of stack)

Dev	vice Room Temp Sort		Remarks
16Mx4	50ns	184/193 (95.34%)	- Fail parts are almost O/S Fail. (Excess Solder/Misalign / Jamming
TOWIX	60ns	479/488 (98.35%)	on hander)

Stacked DRAM Reliability Test Data

◆ Unit Package & Stacked Module Pre-condition Data

Temp.	85 °C/65% (168hrs)	Temp. Cycle (65 ~ 155 °C)	IR Reflow (235°C)	Remark
Top Package	0/116			
Bottom Package	0/116			
Stacked Package With PCB	0/10 Modules (Visual Inspection)		-32EA Stacked Package Mount.	

◆ Unit Package Long Term Reliability Data

- Soak: 85C / 65%, 1000Hrs

- Temperure Cycle Test (-65 C~ 155 C / 1000 cycles)

◆ Stacked Temperature Cycle Data

S/J Cycle		300cyc.	600cyc.	1000cyc.	Remark
Solder Joint (0 ~ 125°C)	Dummy stack	0/116	0/116	0/116	32TSOJ Stack

Solder Joint View 2

>> Double sided reflow soldering + Procondition <<

★ Top side

Procondition

- $\star Bake(125 C)$
- **★Socks**(85RH/85 C)
- $\star T/C(-65\sim155 C)$
- $\star I.R Reflow(235 C)$

Thermal resistance Evaluation

<@tRC= 110ns>

device	0 If	pm	200 lfpm		
item	Stacked DRAM	Discrete DRAM	Stacked DRAM	Discrete DRAM	
Tj	103.5 °C @ 70 ℃	89.41 °C @ 70 Ĉ	93.7 °C/W @ 70 °C	83.15 °C @ 70 °C	
□ ja	87.8 °C/W	53.91 ℃/W	65.2 ℃/W	36.54 ℃/W	
□jc	below 10.0 C/W	8.0 ℃/W	6.0 ℃/W	5.0 ℃/W	

Tj(Junction Temperature),

☐ ʃa(Junction Ambient),

☐ jc(Junction to Case)

Conclusion

- + Without chip design developes the 128M DRAM by using the conventional plastic packaging technology
- + Have been verified Reliability, Electrical Performance and I.R reflow soldering.
- → Cost effective and mass productiable process
- + Providing one of the easiest high density memory solution.
- + Future plan
 - Improve thermal performance